Conic-Sections Question 563

Question: The limiting points of the coaxial system determined by the circles $ x^{2}+y^{2}-2x-6y+9=0 $ and $ x^{2}+y^{2}+6x-2y+1=0 $

Options:

A) $ (-1,2),( \frac{3}{5},\frac{-14}{5} ) $

B) $ (-1,2),( \frac{3}{5},\frac{14}{5} ) $

C) $ (-1,2),( \frac{-3}{5},\frac{14}{5} ) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] The equation of two circles are $ x^{2}+y^{2}-2x-6y+9=0 $ ?. (1) and $ x^{2}+y^{2}+6x-2y+1=0 $ ?. (2) Their radical axis is $ 8x+4y-8=0 $ or $ 2x+y-2=0 $ ? (3) The equation of any circle coaxial with the given circles is $ x^{2}+y^{2}-2x-6y+9+\lambda (2x+y-2)=0 $ or $ x^{2}+y^{2}+(2\lambda -2)x+(\lambda -6)y+(9-2\lambda )=0 $ ?. (4) The centre of this circle is $ [(1-\lambda ),( 3-\frac{\lambda }{2} )] $ Its radius $ =\sqrt{{{(1-\lambda )}^{2}}+{{( 3-\frac{\lambda }{2} )}^{2}}-(9-2\lambda )} $ $ =\sqrt{\frac{5{{\lambda }^{2}}}{4}-3\lambda +1} $ For limiting points its radius = 0 i.e., $ \frac{5{{\lambda }^{2}}}{4}-3\lambda +1=0 $ or $ 5{{\lambda }^{2}}-12\lambda +4=0\therefore $ $ \lambda =2,\frac{2}{5} $ Substituting these values in (5), the limiting points are $ (-1,2) $ and $ ( \frac{3}{5},\frac{14}{5} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें