Conic-Sections Question 565

Question: A line PQ meets the parabola $ y^{2}-4ax $ in R such that PQ is bisected at R. if the coordinates of P are $ (x_1,y_1) $ then the locus of Q is the parabola

Options:

A) $ {{(y+y_1)}^{2}}=8a(x+x_1) $

B) $ {{(y-y_1)}^{2}}=8a(x+x_1) $

C) $ {{(y+y_1)}^{2}}=8a(x-x_1) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the coordinates of Q be $ (h,k) $ . Since the point R lies on the parabola. Let it coordinates be $ (at^{2},2at). $ Since R is midpoint of PQ,
$ \therefore at^{2}=\frac{x_1+h}{2} $ and $ 2at=\frac{y_1+k}{2} $
$ \Rightarrow t^{2}=\frac{x_1+h}{2a} $ And $ t=\frac{y_1+k}{4a} $ Equating the two values of t, we get $ {{( \frac{y_1+k}{4a} )}^{2}}=\frac{x_1+h}{2a}\Rightarrow {{(y_1+k)}^{2}}=8a(x_1+h) $ Hence, locus of Q (h, k) is $ {{(y+y_1)}^{2}}=8a(x+x_1) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें