Conic-Sections Question 566

Question: The equation of the ellipse with its centre at $ (1,2), $ focus at (6,2) and passing through the point $ (4,6) $ is $ \frac{{{(x-1)}^{2}}}{a^{2}}+\frac{{{(y-2)}^{2}}}{b^{2}}=1 $ , then

Options:

A) $ a^{2}=1,b^{2}=25 $

B) $ a^{2}=25,b^{2}=20 $

C) $ a^{2}=20,b^{2}=25 $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Centre is (1, 2) and focus is (6, 2), hence the line joining the centre C and the focus S (i.e., the axis) is parallel to x-axis. Therefore, the equation must be of the form $ \frac{{{(x-1)}^{2}}}{a^{2}}+\frac{{{(y-2)}^{2}}}{b^{2}}=1 $ ?. (i) The distance between the centre and the focus $ CS=ae=5 $ Also $ b^{2}=a^{2}(1-e^{2})=a^{2}-a^{2}e^{2}=a^{2}-a^{2}e^{2} $

$ \therefore $ The equation (i) becomes $ \frac{{{(x-1)}^{2}}}{a^{2}}+\frac{{{(y-2)}^{2}}}{a^{2}-25}=1 $ ?. (ii) The point (4, 6) lies on it, therefore $ \frac{{{(4-1)}^{2}}}{a^{2}}+\frac{{{(6-2)}^{2}}}{a^{2}-25}=1\Rightarrow a^{2}=45 $

$ \therefore b^{2}=45-25=20. $ The required equation is $ \frac{{{(x-1)}^{2}}}{45}+\frac{{{(y-2)}^{2}}}{20}=1. $ $ 9ac-9a^{2}-2c^{2}>9ac-6c^{2} $ ? (i) Again $ 3a<2c\Rightarrow 9ac<6c^{2} $

$ \Rightarrow 9ac-6c^{2}<0 $ ? (ii) From (i) and (ii), $ 9ac-9a^{2}-2c^{2}>0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें