Conic-Sections Question 571

Question: The normal at the point $ (bt^2_1,2bt_1) $ on a parabola meets the parabola again in the point $ (bt^2_2,2bt_2) $ Then

Options:

A) $ t_2=t_1+\frac{2}{t_1} $

B) $ t_2=-t_1-\frac{2}{t_1} $

C) $ t_2=-t_1+\frac{2}{t_1} $

D) $ t_2=t_1-\frac{2}{t_1} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Equation of the normal to a parabola $ y^{2}=4bx $ at point $ ( bt^2_1,2bt_1 ) $ is $ y=-t_1x+2bt_1+bt^3_1 $ As given, it also passes through $ ( bt^2_2,2bt_2 ) $ then $ 2bt_2=-t_1bt^2_2+2bt_1+bt^3_1 $
$ \Rightarrow 2=-t_1(t_2+t_1)\Rightarrow t_2+t_1=-\frac{2}{t_1} $
$ \Rightarrow t_2=-t_1-\frac{2}{t_1} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें