Conic-Sections Question 577
Question: If a Point $ P(x,y) $ moves along the ellipse $ \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 $ and if C is the centre of the ellipse, then, 4 max $ {CP}+5min{CP}= $
Options:
A) 25
B) 40
C) 45
D) 54
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Given $ eq^{n} $ of ellipse is $ \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 $
$ \Rightarrow a=5 $ and $ b=4 $ Since $ p(x,y) $ moves along ellipse and C is the center
$ \therefore $ max (CP) = 5 and min (CP) = 4
$ \therefore $ 4 Max $ {cp}+5min(cp)=4\times 5+5\times 4=40 $