Conic Sections Question 58

Question: The line $ x\cos \alpha +y\sin \alpha =p $ will touch the parabola $ y^{2}=4a(x+a) $ , if

Options:

A) $ p\cos \alpha +a=0 $

B) $ p\cos \alpha -a=0 $

C) $ a\cos \alpha +p=0 $

D) $ a\cos \alpha -p=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x\cos \alpha +y\sin \alpha -p=0 $

…….(i) $ 2ax-yy_1+2a(x_1+2a)=0 $ …….(ii) From (i) and (ii), $ \frac{\cos \alpha }{2a}=\frac{\sin \alpha }{-y}=\frac{-p}{2a(x+2a)} $

therefore $ y=-2\tan \alpha $ and $ x=-p\sec \alpha -2a $

$ \therefore y^{2}=4a(x+a) $

therefore $ 4a^{2}{{\tan }^{2}}\alpha =-4a(p\sec \alpha +a) $

therefore $ p\cos \alpha +a=0 $ .