Conic-Sections Question 590

Question: Equation of the hyperbola whose directirx is $ 2x+y=1 $ , focus (1, 2) and eccentricity $ \sqrt{3} $ is

Options:

A) $ 7x^{2}-2y^{2}+12xy-2x+14y-22=0 $

B) $ 5x^{2}-2y^{2}+10xy+2x+5y-20=0 $

C) $ 4x^{2}+8y^{2}+8xy+2x-2y+10=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ P(x,y) $ be any point on the hyperbola and PM is perpendicular form P on the directrix, Then by definition, $ SP=ePM $
$ \Rightarrow {{(SP)}^{2}}=e^{2}{{(PM)}^{2}} $
$ \Rightarrow {{(x-1)}^{2}}+{{(y-2)}^{2}}=3 $ $ {{{ \frac{2x+y-1}{\sqrt{4+1}} }}^{2}}(\because e=\sqrt{3}) $
$ \Rightarrow 5(x^{2}+y^{2}-2x-4y+5) $ $ =3(4x^{2}+y^{2}+1+4xy-2y-4x) $
$ \Rightarrow 7x^{2}-2y^{2}+12xy-2x+14y-22=0 $ Which is the required hyperbola.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें