Conic-Sections Question 591

Question: The sum of the squares of the perpendiculars on any tangent to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ from two points on the minor axis each at a distance $ \sqrt{a^{2}-b^{2}} $ from the centre is

Options:

A) $ 2a^{2} $

B) $ 2b^{2} $

C) $ a^{2}+b^{2} $

D) $ a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \sqrt{a^{2}-b^{2}}=\pm ae(0,ae) $ So, the points are (ae, 0) and (0, -ae). Let $ \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1 $ be a tangent then sum of squares of perpendicular from these points is $ =\frac{{{( 1-\frac{ae}{b}\sin \theta )}^{2}}+{{( 1+\frac{ae}{b}\sin \theta )}^{2}}}{\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}}} $ $ =\frac{2( 1+\frac{a^{2}e^{2}}{b^{2}}{{\sin }^{2}}\theta )}{\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}}} $ $ =2a^{2}( \frac{b^{2}+(a^{2}-b^{2})sin^{2}\theta }{b^{2}(1-sin\theta )+a^{2}{{\sin }^{2}}\theta } )=2a^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें