Conic-Sections Question 592

Question: A point on the ellipse $ \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 $ at a distance equal to the mean of the lengths of the semi-major axis and semi-minor axis from the centre is

Options:

A) $ ( \frac{2\sqrt{91}}{7},\frac{3\sqrt{105}}{14} ) $

B) $ ( \frac{2\sqrt{91}}{7}-\frac{3\sqrt{105}}{14} ) $

C) $ ( \frac{2\sqrt{105}}{7},\frac{3\sqrt{91}}{14} ) $

D) $ ( -\frac{2\sqrt{105}}{7}-\frac{3\sqrt{91}}{14} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the point is $ (4cos\theta ,3sin\theta ) $ According to question, $ {{(4cos)}^{2}}+{{(3sin\theta )}^{2}}={{( \frac{4+3}{2} )}^{2}} $ ? (1) From (1) $ 16-7{{\sin }^{2}}\theta =\frac{49}{4}\Rightarrow {{\sin }^{2}}\theta =\frac{15}{28} $
$ \therefore \sin \theta =\pm \frac{1}{2}\sqrt{\frac{15}{7}}=\pm \frac{\sqrt{105}}{14} $ Similarly, $ \cos \theta =\pm \frac{\sqrt{91}}{14} $ So the points are $ ( \frac{2\sqrt{91}}{7},\frac{3\sqrt{105}}{14} ); $ $ ( -\frac{2\sqrt{91}}{7},-\frac{3\sqrt{105}}{14} ) $ Interchange $ \theta $ by $ \frac{\pi }{2}+\theta $ and $ \frac{3\pi }{2}+\theta $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें