Conic-Sections Question 595

Question: The curve described parametrically by $ x=2-3\sec t,y=1+4\tan t $ represents:

Options:

A) An ellipse centred at (2, 1) and of eccentricity $ \frac{3}{5} $

B) A circle centred at (2, 1) and of radius 5 units

C) A hyperbola centred at (2, 1) & of eccentricity $ \frac{8}{5} $

D) A hyperbola centred at $ (2,1) $ & of eccentricity $ \frac{5}{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given, $ x=2-3\sec t,y=1+4\tan t $
$ \Rightarrow \sec t=\frac{x-2}{-3},\tan t=\frac{y-1}{4} $ Since, $ {{\sec }^{2}}t-{{\tan }^{2}}t=1 $
$ \therefore \frac{{{(x-2)}^{2}}}{9}-\frac{{{(y-1)}^{2}}=1}{16}, $ Which is a hyperbola with centre at (2, 1) and eccentricity e, given by $ 16=9(e^{2}-1) $
$ \Rightarrow 9e^{2}=25\Rightarrow e^{2}=\frac{25}{9}\Rightarrow e=\frac{5}{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें