Conic-Sections Question 597
Question: Let E be the ellipse $ \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 $ and C be the circle $ x^{2}+y^{2}=9. $ Let $ P=(1,2) $ and $ Q=(2,1) $ Which one of the following is correct?
Options:
A) Q lies inside C but outside E
B) Q lies outside both C and E
C) P lies inside both C and E
D) P lies inside both C but outside E.
Show Answer
Answer:
Correct Answer: D
Solution:
[d] Given equation of ellipse E is  $ \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 $
$ \Rightarrow \frac{4x^{2}+9y^{2}}{36}=1\Rightarrow 4x^{2}+9y^{2}=36 $
$ \Rightarrow 4x^{2}+9y^{2}-36=0 $               ?. (1) And C: Eqs of circle is  $ x^{2}+y^{2}=9 $  Which can be rewritten as  $ x^{2}+y^{2}-9=0 $                                     ? (2) For a point P (1, 2) we have  $ 4{{(1)}^{2}}+9{{(2)}^{2}}-36=40-36>0 $  [from (1)] and  $ 1^{2}+2^{2}-9=5-9<0 $           [from (2)]
$ \therefore  $  Point P lies outside of E and inside of C.
 BETA
  BETA 
             
             
           
           
           
          