Conic Sections Question 61

Question: If any tangent to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ cuts off intercepts of length h and k on the axes, then $ \frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}= $

Options:

A) 0

B) 1

C) -1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

The tangent at $ (a\cos \theta ,b\sin \theta ) $ to the ellipse is $ \frac{(a\cos \theta )x}{a^{2}}+\frac{(b\sin \theta )y}{b^{2}}=1 $ or $ \frac{x}{(a/\cos \theta )}+\frac{y}{(b/\sin \theta )}=1 $

$ \therefore $ Intercepts are, $ h=\frac{a}{\cos \theta },k=\frac{b}{\sin \theta } $

therefore $ \frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें