Conic Sections Question 61

Question: If any tangent to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ cuts off intercepts of length h and k on the axes, then $ \frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}= $

Options:

A) 0

B) 1

C) -1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

The tangent at $ (a\cos \theta ,b\sin \theta ) $ to the ellipse is $ \frac{(a\cos \theta )x}{a^{2}}+\frac{(b\sin \theta )y}{b^{2}}=1 $ or $ \frac{x}{(a/\cos \theta )}+\frac{y}{(b/\sin \theta )}=1 $

$ \therefore $ Intercepts are, $ h=\frac{a}{\cos \theta },k=\frac{b}{\sin \theta } $

therefore $ \frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=1 $ .