Conic Sections Question 63

Question: The point of the contact of the tangent to the parabola $ y^{2}=4ax $ which makes an angle of $ 60^{o} $ with x-axis, is

Options:

A) $ ( \frac{a}{3},\ \frac{2a}{\sqrt{3}} ) $

B) $ ( \frac{2a}{\sqrt{3}},\ \frac{a}{3} ) $

C) $ ( \frac{a}{\sqrt{3}},\ \frac{2a}{3} ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ m=\tan \theta =\tan 60{}^\circ =\sqrt{3} $

The equation of tangent at $ (h,k) $ to $ y^{2}=4ax $ is $ yk=2a(x+h) $

Comparing, we get $ m=\sqrt{3}=\frac{2a}{k} $ or $ k=\frac{2a}{\sqrt{3}} $ and $ h=\frac{a}{3} $ .