Conic Sections Question 71

Question: Let $ P(a\sec \theta ,\ b\tan \theta ) $ and $ Q(a\sec \varphi ,\ b\tan \varphi ) $ , where $ \theta +\varphi =\frac{\pi }{2} $ , be two points on the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . If (h, k) is the point of intersection of the normals at P and Q, then k is equal to

[IIT 1999; MP PET 2002]

Options:

A) $ \frac{a^{2}+b^{2}}{a} $

B) $ -( \frac{a^{2}+b^{2}}{a} ) $

C) $ \frac{a^{2}+b^{2}}{b} $

D) $ -( \frac{a^{2}+b^{2}}{b} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

Given P $ (a\sec \theta ,b\tan \theta ) $ and $ Q(a\sec \varphi ,b\tan \varphi ) $

The equation of tangent at point P is $ \frac{x\sec \theta }{a}-\frac{y\tan \theta }{b}=1 $

m of tangent $ =\frac{b}{\tan \theta }\times \frac{\sec \theta }{a}=\frac{b}{a}.\frac{1}{\sin \theta } $

Hence the equation of perpendicular at P is $ y-b\tan \theta =-\frac{a\sin \theta }{b}(x-a\sec \theta ) $

or $ by-b^{2}\tan \theta =-a\sin \theta x+a^{2}\tan \theta $

or $ a\sin \theta x+by=(a^{2}+b^{2})\tan \theta $ ……(i) Similarly the equation of perpendicular at Q is $ a\sin \varphi x+by=(a^{2}+b^{2})\tan \varphi $ ……(ii) On multiplying (i) by $ \sin \varphi $ and (ii) by $ \sin \theta $

$ a\sin \theta \sin \varphi x+b\sin \varphi y=(a^{2}+b^{2})\tan \theta \sin \varphi $

$ a\sin \varphi \sin \theta x+b\sin \theta y=(a^{2}+b^{2})\tan \varphi \sin \theta $

On subtraction by, $ (\sin \varphi -\sin \theta )=(a^{2}+b^{2})(\tan \theta \sin \varphi -\tan \varphi \sin \theta ) $

$ \therefore y=k=\frac{a^{2}+b^{2}}{b}.\frac{\tan \theta \sin \varphi -\tan \varphi \sin \theta }{\sin \varphi -\sin \theta } $

$ \because \theta +\varphi =\frac{\pi }{2} $

therefore $ \varphi =\frac{\pi }{2}-\theta $

therefore $ \sin \varphi =\cos \theta $ and $ \tan \varphi =\cot \theta $

$ \therefore y=k=\frac{a^{2}+b^{2}}{b}.\frac{\tan \theta \cos \theta -\cot \theta \sin \theta }{\cos \theta -\sin \theta } $

$ =\frac{a^{2}+b^{2}}{b}( \frac{\sin \theta -\cos \theta }{\cos \theta -\sin \theta } )=-\frac{(a^{2}+b^{2})}{b} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें