Conic Sections Question 74

Question: If the straight line $ x+y=1 $ touches the parabola $ y^{2}-y+x=0 $ , then the co-ordinates of the point of contact are

[RPET 1991]

Options:

A) (1, 1)

B) $ ( \frac{1}{2},\ \frac{1}{2} ) $

C) (0, 1)

D) (1, 0)

Show Answer

Answer:

Correct Answer: C

Solution:

m of tangent $ =-1 $ . Also from equation of parabola, we get gradient at $ (h,k) $ as the slope of parabola $ =\frac{dy}{dx}=\frac{-1}{2y-1}=\frac{-1}{2k-1} $

Since line and parabola touch at $ (h,k) $

therefore $ \frac{-1}{2k-1}=-1 $

therefore $ -2k+1=-1 $

therefore $ k=1 $

Putting this value in $ x+y=1 $ , we have $ h=0, $ so the point of contact is $ (0,1). $