Conic Sections Question 80

Question: The line $ y=mx+c $ touches the parabola $ x^{2}=4ay $ , if

[MNR 1973; MP PET 1994, 99]

Options:

A) $ c=-am $

B) $ c=-a/m $

C) $ c=-am^{2} $

D) $ c=a/m^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x^{2}=4a(mx+c) $

therefore $ x^{2}-4amx-4ac=0 $

It touches, then $ B^{2}-4AC=0 $

therefore $ 16a^{2}m^{2}+16ac $

therefore $ \Rightarrow $

therefore $ c=-am^{2} $ .