Conic Sections Question 87

Question: The combined equation of the asymptotes of the hyperbola $ 2x^{2}+5xy+2y^{2}+4x+5y=0 $

[Karnataka CET 2002]

Options:

A) $ 2x^{2}+5xy+2y^{2}=0 $

B) $ 2x^{2}+5xy+2y^{2}-4x+5y+2=0 $

C) $ 2x^{2}+5xy+2y^{2}+4x+5y-2=0 $

D) $ 2x^{2}+5xy+2y^{2}+4x+5y+2=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Given, equation of hyperbola $ 2x^{2}+5xy+2y^{2}+4x+5y=0 $ and equation of asymptotes $ 2x^{2}+5xy+2y^{2}+4x+5y+\lambda =0 $ …….(i), which is the equation of a pair of straight lines. We know that the standard equation of a pair of straight lines is $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0. $ Comparing equation (i) with standard equation, we get $ a=2,b=2, $

$ h=\frac{5}{2},g=2,f=\frac{5}{2} $ and $ c=\lambda . $

We also know that the condition for a pair of straight lines is $ abc+2fgh-af^{2}-bg^{2}-ch^{2}=0. $

Therefore $ 4\lambda +25-\frac{25}{2}-8-\frac{25}{4}\lambda =0 $

or $ -\frac{9\lambda }{4}+\frac{9}{2}=0 $ or $ \lambda =2 $ . Substituting value of $ \lambda $ in equation (i), we get $ 2x^{2}+5xy+2y^{2}+4x+5y+2=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें