Conic Sections Question 88

Question: The ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ and the straight line $ y=mx+c $ intersect in real points only if

[MNR 1995]

Options:

A) $ a^{2}m^{2}<c^{2}-b^{2} $

B) $ a^{2}m^{2}>c^{2}-b^{2} $

C) $ a^{2}m^{2}\ge c^{2}-b^{2} $

D) $ c\ge b $

Show Answer

Answer:

Correct Answer: C

Solution:

To cut at real points, $ c^{2}\le a^{2}m^{2}+b^{2} $

therefore $ a^{2}m^{2}\ge c^{2}-b^{2} $ .