Conic Sections Question 90

Question: The ellipse $ x^{2}+4y^{2}=4 $ is inscribed in a rectangle aligned with the coordinate axes, which is in turn inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is

Options:

A) $ x^{2}+16y^{2}=16 $

B) $ x^{2}+12y^{2}=16 $

C) $ 4x^{2}+48y^{2}=48 $

D) $ 4x^{2}+64y^{2}=48 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ x^{2}+4y^{2}=4\Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{1}=1 $ So $ a=2, $

$ b=1, $ Thus P is (2, 1). The required ellipse is $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $
$ \Rightarrow \frac{x^{2}}{4^{2}}+\frac{y^{2}}{b^{2}}=1 $ The point (2, 1) lies on it. So $ \frac{4}{16}+\frac{1}{b^{2}}=1 $
$ \Rightarrow \frac{1}{b^{2}}=1-\frac{1}{4}=\frac{3}{4} $
$ \Rightarrow b^{2}=\frac{4}{3} $
$ \therefore \frac{x^{2}}{16}+\frac{y^{2}}{( \frac{4}{3} )}=1 $
$ \Rightarrow \frac{x^{2}}{16}+\frac{3y^{2}}{4}=1 $
$ \Rightarrow x^{2}+12y^{2}=16 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें