Conic Sections Question 94

Question: The equation of the tangent to the parabola $ y^{2}=4ax $ at point $ (a/t^{2},\ 2a/t) $ is

[RPET 1996]

Options:

A) $ ty=xt^{2}+a $

B) $ ty=x+at^{2} $

C) $ y=tx+at^{2} $

D) $ y=tx+(a/t^{2}) $

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of the tangent to the parabola, $ y^{2}=4ax $ is $ yy_1=2a(x+x_1) $

therefore $ y.\frac{2a}{t}=2a( x+\frac{a}{t^{2}} ) $

therefore $ \frac{y}{t}=( x+\frac{a}{t^{2}} )$

therefore $ \frac{y}{t}=\frac{t^{2}x+a}{t^{2}} $

therefore $ ty=t^{2}x+a $