Conic Sections Question 95

Question: The equation of common tangent to the circle $ x^{2}+y^{2}=2 $ and parabola $ y^{2}=8x $ is

[RPET 1997]

Options:

A) $ y=x+1 $

B) $ y=x+2 $

C) $ y=x-2 $

D) $ y=-x+2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y^{2}=8x, $
$ \therefore 4a=8 $

therefore $ a=2 $

Any tangent of parabola is, $ y=mx+\frac{a}{m} $ or $ mx-y+\frac{2}{m}=0 $

If it is a tangent to the circle $ x^{2}+y^{2}=2, $ then perpendicular from centre $ (0,0) $ is equal to radius $ \sqrt{2} $ .
$ \therefore \frac{2/m}{\sqrt{m^{2}+1}}=\sqrt{2} $ or $ \frac{4}{m^{2}}=2(m^{2}+1) $

therefore $ m^{4}+m^{2}-2=0 $

therefore $ (m^{2}+2)(m^{2}-1)=0 $ or $ m=\pm 1 $

Hence the common tangent are $ y=\pm (x+2) $

$ \therefore y=x+2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें