Conic Sections Question 95

Question: The equation of common tangent to the circle $ x^{2}+y^{2}=2 $ and parabola $ y^{2}=8x $ is

[RPET 1997]

Options:

A) $ y=x+1 $

B) $ y=x+2 $

C) $ y=x-2 $

D) $ y=-x+2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y^{2}=8x, $
$ \therefore 4a=8 $

therefore $ a=2 $

Any tangent of parabola is, $ y=mx+\frac{a}{m} $ or $ mx-y+\frac{2}{m}=0 $

If it is a tangent to the circle $ x^{2}+y^{2}=2, $ then perpendicular from centre $ (0,0) $ is equal to radius $ \sqrt{2} $ .
$ \therefore \frac{2/m}{\sqrt{m^{2}+1}}=\sqrt{2} $ or $ \frac{4}{m^{2}}=2(m^{2}+1) $

therefore $ m^{4}+m^{2}-2=0 $

therefore $ (m^{2}+2)(m^{2}-1)=0 $ or $ m=\pm 1 $

Hence the common tangent are $ y=\pm (x+2) $

$ \therefore y=x+2 $ .