Conic Sections Question 96

Question: If the line $ lx+my+n=0 $ is a tangent to the parabola $ y^{2}=4ax $ , then locus of its point of contact is

[RPET 1997]

Options:

A) A straight line

B) A circle

C) A parabola

D) Two straight lines

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of tangent to parabola $ ty=x+at^{2} $ ……(i) Clearly, $ lx+my+n=0 $ is also a chord of contact of tangents. Therefore $ ty=x+at^{2} $ and $ lx+my+n=0 $ represents the same line.

Hence, $ \frac{1}{l}=-\frac{t}{m}=\frac{at^{2}}{n} $

therefore $ t=\frac{-m}{l},t^{2}=\frac{n}{la} $

Eliminating t, we get,

$ m^{2}=\frac{nl}{a} $ i.e., an equation of parabola.