Coordinate Geometry Question 104

Question: The locus of the mid-point of the distance between the axes of the variable line $ x\cos \alpha +y\sin \alpha =p, $ where p is constant, is

[MNR 1985; CEE 1993; UPSEAT 2000; AIEEE 2002]

Options:

A) $ x^{2}+y^{2}=4p^{2} $

B) $ \frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}} $

C) $ x^{2}+y^{2}=\frac{4}{p^{2}} $

D) $ \frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

The straight line $ x\cos \alpha +y\sin \alpha =p $ meets the x-axis at the point $ A( \frac{p}{\cos \alpha },0 ) $ and the y-axis at the point $ B( 0,\frac{p}{\sin \alpha } ) $ . Let (h, k) be the coordinates of the middle point of the line segment AB. Then, $ h=\frac{p}{2\cos \alpha } $ and $ k=\frac{p}{2\sin \alpha } $
$ \Rightarrow \cos \alpha =\frac{p}{2h} $ and $ \sin \alpha =\frac{p}{2k} $
$ \Rightarrow {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =\frac{p^{2}}{4h^{2}}+\frac{p^{2}}{4k^{2}}=1 $

Hence locus of the point (h, k) is $ \frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें