Coordinate Geometry Question 108

Question: A point moves such that the sum of its distances from two fixed points (ae,0) and (-ae,0) is always 2a. Then equation of its locus is

[MNR 1981]

Options:

A) $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}(1-e^{2})}=1 $

B) $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}(1-e^{2})}=1 $

C) $ \frac{x^{2}}{a^{2}(1-e^{2})}+\frac{y^{2}}{a^{2}}=1 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ A(ae,0) $ and $ B(-ae,0) $ be two given points and $ (h,k) $ be the coordinates of the moving point P.

Now, $ PA+PB=2a $
$ \Rightarrow \sqrt{{{(h-ae)}^{2}}+k^{2}}+\sqrt{{{(h+ae)}^{2}}+k^{2}}=2a $ …..(i) But, we know that $ [{{(h-ae)}^{2}}+k^{2}]-[{{(h+ae)}^{2}}+k^{2}]=-4aeh $ …..(ii)

Dividing (ii) by (i), we get $ \sqrt{[{{(h-ae)}^{2}}+k^{2}]}-\sqrt{[{{(h+ae)}^{2}}+k^{2}]}=-2eh $ …..(iii)

Adding (i) and (iii), $ 2\sqrt{{{[h-ae)}^{2}}+k^{2}]}=2(a-eh) $ Squaring both sides, we get

$ \Rightarrow {{(h-ae)}^{2}}+k^{2}={{(a-eh)}^{2}}\Rightarrow \frac{h^{2}}{a^{2}}+\frac{k^{2}}{a^{2}(1-e^{2})}=1 $

Hence locus of P is $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}(1-e^{2})}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें