Coordinate Geometry Question 121

Question: If $ A(\cos \alpha ,\sin \alpha ),\ B(\sin \alpha ,-\cos \alpha ),C(1,2) $ are the vertices of a $ \Delta ABC $ , then as $ \alpha $ varies, the locus of its centroid is

Options:

A) $ x^{2}+y^{2}-2x-4y+1=0 $

B) $ 3(x^{2}+y^{2})-2x-4y+1=0 $

C) $ x^{2}+y^{2}-2x-4y+3=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ (h,k) $ be the centroid of the triangle, then $ h=\frac{\cos \alpha +\sin \alpha +1}{3} $ and $ k=\frac{\sin \alpha -\cos \alpha +2}{3} $
$ \Rightarrow 3h-1=\cos \alpha +\sin \alpha $ and $ 3k-2=\sin \alpha -\cos \alpha $
$ \Rightarrow {{(3h-1)}^{2}}+{{(3k-2)}^{2}}=2 $ , (squaring and adding)
$ \Rightarrow 9(h^{2}+k^{2})-6h-12k+3=0 $
$ \Rightarrow 3(h^{2}+k^{2})-2h-4k+1=0 $
$ \therefore $ Locus of $ (h,k) $ is $ 3(x^{2}+y^{2})-2x-4y+1=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें