Coordinate Geometry Question 122

Question: If the equation of the locus of a point equidistant from the points $ (a_1,b_1) $ and $ (a_2,b_2) $ is $ (a_1-a_2)x+(b_1-b_2)y+c=0 $ , then the value of c is

Options:

A) $ a_1^{2}-a_2^{2}+b_1^{2}-b_2^{2} $

B) $ \sqrt{a_1^{2}+b_1^{2}-a_2^{2}-b_2^{2}} $

C) $ \frac{1}{2}(a_1^{2}+a_2^{2}+b_1^{2}+b_2^{2}) $

D) $ \frac{1}{2}(a_2^{2}+b_2^{2}-a_1^{2}-b_1^{2}) $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ (h,k) $ be the point on the locus, then by the given conditions $ {{(h-a_1)}^{2}}+{{(k-b_1)}^{2}}={{(h-a_2)}^{2}}+{{(k-b_2)}^{2}} $
$ \Rightarrow 2h(a_1-a_2)+2k(b_1-b_2)+a_2^{2}+b_2^{2}-a_1^{2}-b_1^{2}=0 $
$ \Rightarrow h(a_1-a_2)+k(b_1-b_2)+\frac{1}{2}(a_2^{2}+b_2^{2}-a_1^{2}-b_1^{2})=0 $ ….(i) Also, since (h, k) lies on the given locus, therefore $ (a_1-a_2)h+(b_1-b_2)k+c=0 $

…..(ii) Comparing (i) and (ii), we get $ c=\frac{1}{2}(a_2^{2}+b_2^{2}-a_1^{2}-b_1^{2}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें