Coordinate Geometry Question 125

Question: Locus of centroid of the triangle whose vertices are $ (a\cos t,a\sin t),\ (b\sin t,-b\cos t) $ and (1, 0), where t is a parameter; is

[AIEEE 2003]

Options:

A) $ {{(3x-1)}^{2}}+{{(3y)}^{2}}=a^{2}-b^{2} $

B) $ {{(3x-1)}^{2}}+{{(3y)}^{2}}=a^{2}+b^{2} $

C) $ {{(3x+1)}^{2}}+{{(3y)}^{2}}=a^{2}+b^{2} $

D) $ {{(3x+1)}^{2}}+{{(3y)}^{2}}=a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ 3h=a\cos t+b\sin t+1,3k=a\sin t-b\cos t $

$ a^{2}+b^{2}={{(3h-1)}^{2}}+{{(3k)}^{2}} $

$ {{(3x-1)}^{2}}+{{(3y)}^{2}}=a^{2}+b^{2} $ .