Coordinate Geometry Question 129

Question: (0, -1) and (0, 3) are two opposite vertices of a square. The other two vertices are

[Karnataka CET 2005]

Options:

A) (0, 1), (0, -3)

B) (3, -1) (0, 0)

C) (2, 1), (-2, 1)

D) (2, 2), (1, 1)

Show Answer

Answer:

Correct Answer: C

Solution:

Length of diagonal = 4 Now, $ AC^{2}=AB^{2}+BC^{2} $

$ AC^{2}=2AB^{2}\Rightarrow 8=AB^{2} $

$ AB=BC=2\sqrt{2} $ Now, let $ B(x,y) $ ;
$ \therefore AB^{2}=BC^{2} $

therefore $ {{(x-0)}^{2}}+{{(y+1)}^{2}}={{(x-0)}^{2}}+{{(y-3)}^{2}} $

$ x^{2}+y^{2}+2y+1=x^{2}+y^{2}-6y+9 $

therefore $ y=1;\therefore x^{2}+{{(2)}^{2}}=8;\Rightarrow x^{2}=4\Rightarrow x=\pm 2 $
$ \therefore $ other vertices are (2, 1),(-2, 1).