Coordinate Geometry Question 130

Question: If the distance of any point P from the point $ A(a+b,a-b) $ and $ B(a-b,a+b) $ are equal, then the locus of P is

[Karnataka CET 2003]

Options:

A) $ x-y=0 $

B) $ ax+by=0 $

C) $ bx-ay=0 $

D) $ x+y=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let coordinate of point P is (x, y) Given $ PA=PB\Rightarrow {{(PA)}^{2}}={{(PB)}^{2}} $
$ \Rightarrow {{{x-(a+b)}}^{2}}+{{{y-(a-b)}}^{2}} $

$ ={{{x-(a-b)}}^{2}}+{{{y-(a+b)}}^{2}} $
$ \Rightarrow 2x[-a-b+a-b]+2y[-a+b+a+b]=0 $
$ \Rightarrow x(-2b)+y(2b)=0 $
$ \Rightarrow -x+y=0\Rightarrow x-y=0 $ .