Coordinate Geometry Question 132

Question: Let P be the point (1, 0) and Q a point of the locus $ y^{2}=8x $ . The locus of midpoint of PQ is

[AIEEE 2005]

Options:

A) $ x^{2}+4y+2=0 $

B) $ x^{2}-4y+2=0 $

C) $ y^{2}-4x+2=0 $

D) $ y^{2}+4x+2=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ P=(1,0),Q=(h,k) $ such that $ k^{2}=8h $ Let $ (\alpha ,\beta ) $ be the midpoint of $ PQ $ ; $ \alpha =\frac{h+1}{2},\beta =\frac{k+0}{2};2\alpha -1=h,2\beta =k $

$ {{(2\beta )}^{2}}=8(2\alpha -1)\Rightarrow {{\beta }^{2}}=4\alpha -2\Rightarrow y^{2}-4x+2=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें