Coordinate Geometry Question 132

Question: Let P be the point (1, 0) and Q a point of the locus $ y^{2}=8x $ . The locus of midpoint of PQ is

[AIEEE 2005]

Options:

A) $ x^{2}+4y+2=0 $

B) $ x^{2}-4y+2=0 $

C) $ y^{2}-4x+2=0 $

D) $ y^{2}+4x+2=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ P=(1,0),Q=(h,k) $ such that $ k^{2}=8h $ Let $ (\alpha ,\beta ) $ be the midpoint of $ PQ $ ; $ \alpha =\frac{h+1}{2},\beta =\frac{k+0}{2};2\alpha -1=h,2\beta =k $

$ {{(2\beta )}^{2}}=8(2\alpha -1)\Rightarrow {{\beta }^{2}}=4\alpha -2\Rightarrow y^{2}-4x+2=0 $ .