Coordinate Geometry Question 134

Question: The area of the triangle formed by the lines $ y=m_1x+c_1, $

$ y=m_2x+c_2 $ and $ x=0 $ is

Options:

A) $ \frac{1}{2}\frac{{{(c_1+c_2)}^{2}}}{(m_1-m_2)} $

B) $ \frac{1}{2}\frac{{{(c_1-c_2)}^{2}}}{(m_1+m_2)} $

C) $ \frac{1}{2}\frac{{{(c_1-c_2)}^{2}}}{(m_1-m_2)} $

D) $ \frac{{{(c_1-c_2)}^{2}}}{(m_1-m_2)} $

Show Answer

Answer:

Correct Answer: C

Solution:

On solving the equation of lines, we get the vertices of triangle $ (0,c_1),(0,c_2) $ , and $ ( \frac{c_2-c_1}{m_1-m_2},\frac{m_1c_2-m_2c_1}{m_1-m_2} ) $

Hence, the area $ =\frac{1}{2} \begin{vmatrix} 0 & c_1 & 1 \\ 0 & c_2 & 1 \\ \frac{c_2-c_1}{m_1-m_2} & \frac{m_1c_2-m_2c_1}{m_1-m_2} & 1 \\ \end{vmatrix} $

$ =\frac{1}{2}[ 0+c_1( \frac{c_2-c_1}{m_1-m_2} )-{c _{2}}( \frac{c_2-c_1}{m_1-m_2} ) ] $

$ =\frac{1}{2}\frac{(c_2-c_1)(c_1-c_2)}{m_1-m_2}=\frac{1}{2}\frac{{{(c_1-c_2)}^{2}}}{(m_1-m_2)} $ . (sign is not considered) Note : Students should remember this question as a formula.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें