Coordinate Geometry Question 150

Question: If equation of three sides of a triangle are $ x=2, $

$ y+1=0 $ and $ x+2y=4 $ then co-ordinates of circumcentre of this triangle are

[AMU 2005]

Options:

A) (4, 0)

B) (2, -1)

C) (0, 4)

D) (-1, 2)

Show Answer

Answer:

Correct Answer: A

Solution:

Equations of three sides of a triangle are $ x=2,y+1=0 $ and $ x+2y=4 $ Co-ordinates of point of intersection of the $ x=2 $ and $ y+1=0 $ is (2, -1) Co-ordinates of point of intersection of $ x=2 $ and $ x+2y=4 $ is (2, 1) Co-ordinates of point of intersection of $ y+1=0 $ and $ x+2y=4 $ is (6, -1) Let Co-ordinates of circumcentre is (x, y) $ {{(x-2)}^{2}}+{{(y+1)}^{2}}={{(x-2)}^{2}}+{{(y-1)}^{2}} $

$ {{(y+1)}^{2}}={{(y-1)}^{2}} $ ; $ y^{2}+2y+1=y^{2}-2y+1 $

$ 4y=0 $ , $ y=0 $ and $ {{(x-2)}^{2}}+{{(y-1)}^{2}}={{(x-6)}^{2}}+{{(y+1)}^{2}} $ In this equation put $ y=0 $

$ {{(x-2)}^{2}}+{{(0-1)}^{2}}={{(x-6)}^{2}}+{{(0+1)}^{2}} $

$ {{(x-2)}^{2}}+1={{(x-6)}^{2}}+1 $ ; $ {{(x-2)}^{2}}-{{(x-6)}^{2}}=0 $

$ (x-2+x-6)(x-2-x+6)=0 $

$ 4(2x-8)=0 $

therefore $ 8(x-4)=0 $ ; $ x-4=0 $

therefore $ x=4 $ Co-ordinates of circumcentre is (4, 0).