Coordinate Geometry Question 154

Question: If the points $ (k,2-2k) $ , $ (1-k,2k) $ and $ (-k-4,6-2k) $ be collinear, then the possible values of k are

[AMU 1978; RPET 1997]

Options:

A) $ \frac{1}{2},-1 $

B) $ 1,-\frac{1}{2} $

C) $ 1,-2 $

D) $ 2,-1 $

Show Answer

Answer:

Correct Answer: A

Solution:

The points are collinear if the area of triangle formed by these three points is zero.
$ \Rightarrow \frac{1}{2}[k{2k-(6-2k)}+(1-k){(6-2k)-(2-2k)} $

$ +(-4-k){(2-2k)-2k}]=0 $ On simplification, we get $ k=-1 $ or $ \frac{1}{2} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index