Coordinate Geometry Question 20
Question: Two fixed points are $ A(a,0) $ and $ B(-a,0) $ . If $ \angle A-\angle B=\theta $ , then the locus of point C of triangle ABC will be
[Roorkee 1982]
Options:
A) $ x^{2}+y^{2}+2xy\tan \theta =a^{2} $
B) $ x^{2}-y^{2}+2xy\tan \theta =a^{2} $
C) $ x^{2}+y^{2}+2xy\cot \theta =a^{2} $
D) $ x^{2}-y^{2}+2xy\cot \theta =a^{2} $
Show Answer
Answer:
Correct Answer: D
Solution:
Given  $ \angle A-\angle B=\theta  $
$ \Rightarrow \tan (A-B)=\tan \theta  $    …..(i) In right angled triangle  $ CDA,\tan A=\frac{k}{a-h} $  and similarly in triangle  $ CDB,\tan B=\frac{k}{a+h} $  Also from (i),  $ \frac{\tan A-\tan B}{1+\tan A.\tan B}=\tan \theta  $  Substituting the values of  $ \tan A $  and  $ \tan B, $  we get  $ h^{2}-k^{2}+2hk\cot \theta =a^{2} $
Hence the locus is $ x^{2}-y^{2}+2xy\cot \theta =a^{2} $ .
 BETA
  BETA 
             
             
           
           
           
          