Coordinate Geometry Question 29

Question: The points $ (-a,-b),\ (a,b),\ (a^{2},ab) $ are

Options:

A) Vertices of an equilateral triangle

B) Vertices of a right angled triangle

C) Vertices of an isosceles triangle

D) Collinear

Show Answer

Answer:

Correct Answer: D

Solution:

$ l_1=\sqrt{{{(2a)}^{2}}+{{(2b)}^{2}}}=2\sqrt{a^{2}+b^{2}} $

$ l_2=\sqrt{{{(a^{2}-a)}^{2}}+b^{2}{{(a-1)}^{2}}}=(a-1)\sqrt{a^{2}+b^{2}} $

$ l_3=\sqrt{{{(a^{2}+a)}^{2}}+b^{2}{{(a+1)}^{2}}}=(a+1)\sqrt{a^{2}+b^{2}} $ Now $ l_1+l_2=l_3. $

Hence points are collinear.