Coordinate Geometry Question 44

Question: The point which divides externally the line joining the points $ (a+b,a-b) $ and $ (a-b,a+b) $ in the ratio $ a:b $ , is

Options:

A) $ ( \frac{a^{2}-2ab-b^{2}}{a-b},\frac{a^{2}+b^{2}}{a-b} ) $

B) $ ( \frac{a^{2}-2ab-b^{2}}{a-b},\frac{a^{2}-b^{2}}{a-b} ) $

C) $ ( \frac{a^{2}-2ab+b^{2}}{a-b},\frac{a^{2}+b^{2}}{a-b} ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ x=\frac{a(a-b)-b(a+b)}{a-b}=\frac{a^{2}-2ab-b^{2}}{a-b} $

$ y=\frac{a(a+b)-b(a-b)}{a-b}=\frac{a^{2}+b^{2}}{a-b} $ .