Coordinate Geometry Question 44
Question: The point which divides externally the line joining the points $ (a+b,a-b) $ and $ (a-b,a+b) $ in the ratio $ a:b $ , is
Options:
A) $ ( \frac{a^{2}-2ab-b^{2}}{a-b},\frac{a^{2}+b^{2}}{a-b} ) $
B) $ ( \frac{a^{2}-2ab-b^{2}}{a-b},\frac{a^{2}-b^{2}}{a-b} ) $
C) $ ( \frac{a^{2}-2ab+b^{2}}{a-b},\frac{a^{2}+b^{2}}{a-b} ) $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Here $ x=\frac{a(a-b)-b(a+b)}{a-b}=\frac{a^{2}-2ab-b^{2}}{a-b} $
$ y=\frac{a(a+b)-b(a-b)}{a-b}=\frac{a^{2}+b^{2}}{a-b} $ .