Coordinate Geometry Question 56

Question: If the point (x, y) be equidistant from the points $ (a+b,b-a) $ and $ (a-b,a+b), $ then

[MP PET 1983, 94]

Options:

A) $ ax+by=0 $

B) $ ax-by=0 $

C) $ bx+ay=0 $

D) $ bx-ay=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{{ x-(a+b) }}^{2}}+{{{ y-(b-a) }}^{2}}={{{ x-(a-b) }}^{2}}+{{{ y-(a+b) }}^{2}} $
$ \Rightarrow x^{2}+{{(a+b)}^{2}}-2x(a+b)+y^{2}+{{(b-a)}^{2}}-2y(b-a) $

$ =x^{2}+{{(a-b)}^{2}}-2x(a-b)+y^{2}+{{(a+b)}^{2}}-2y(a+b) $ On simplification, we get $ bx-ay=0 $

Trick: The locus will be right bisector of the line joining the given points, therefore the line must pass through the mid-points of the given point i.e. (a, b). Obviously, the line given in option (d) passes through (a, b).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें