Coordinate Geometry Question 57

Question: The locus of a point P which moves in such a way that the segment OP, where O is the origin, has slope $ \sqrt{3} $ is

Options:

A) $ x-\sqrt{3}y=0 $

B) $ x+\sqrt{3}y=0 $

C) $ \sqrt{3}x+y=0 $

D) $ \sqrt{3}x-y=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Slope is given by $ \frac{dy}{dx}=\sqrt{3}\Rightarrow \int _{{}}^{{}}{dy}=\sqrt{3}\int _{{}}^{{}}{dx} $
$ \Rightarrow \sqrt{3}x-y+c=0 $ This passes through (0, 0), so c = 0

Hence the required locus is $ \sqrt{3}x-y=0 $ .