Coordinate Geometry Question 61

Question: The distance between the points $ (a\cos \alpha ,a\sin \alpha ) $ and $ (a\cos \beta ,a\sin \beta ) $ is

Options:

A) $ a\cos \frac{\alpha -\beta }{2} $

B) $ 2a\cos \frac{\alpha -\beta }{2} $

C) $ a\sin \frac{\alpha -\beta }{2} $

D) $ 2a\sin \frac{\alpha -\beta }{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Distance $ =\sqrt{a^{2}{{(\cos \alpha -\cos \beta )}^{2}}+a^{2}{{(\sin \alpha -\sin \beta )}^{2}}} $

$ =a\sqrt{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\sin }^{2}}\beta -2\cos \alpha \cos \beta -2\sin \alpha \sin \beta } $

$ =a\sqrt{2{ 1-\cos (\alpha -\beta ) }}=2a\sin ( \frac{\alpha -\beta }{2} ) $

Trick: Put $ a=1,\alpha =\frac{\pi }{2},\beta =\frac{\pi }{6}, $ then the points will be (0, 1) and $ ( \frac{\sqrt{3}}{2},\frac{1}{2} ) $ . Obviously, the distance between these two points is 1 which is given by (d). $ { \because 2a\sin \frac{\alpha -\beta }{2}=2\times 1\times \sin \frac{(\pi /2)-(\pi /6)}{2}=2\times \frac{1}{2}=1 } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें