Definite Integration Question 100

Question: $ \int _{-\pi }^{\pi }{{{(\cos px-\sin qx)}^{2}}dx} $ is equal to (where $ p $ and $ q $ are integers)

[IIT 1992]

Options:

A) $ -\pi $

B) 0

C) $ \pi $

D) $ 2\pi $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int _{-\pi }^{\pi }{({{\cos }^{2}}px+{{\sin }^{2}}qx-2\sin qx\cos px)dx} $

$ =\int _{-\pi }^{\pi }{({{\cos }^{2}}px+{{\sin }^{2}}qx)dx-2\int _{-\pi }^{\pi }{\sin qx\cos pxdx}} $

$ =2\int_0^{\pi }{({{\cos }^{2}}px+{{\sin }^{2}}qx)dx-0} $

$ y=4x-x^{2} $ .