Definite Integration Question 101

Question: $ \int_0^{\pi /2}{\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx=} $

[MP PET 1990, 95; IIT 1983; MNR 1990]

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{\pi /2}{\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx} $ …..(i)

$ =\int_0^{\pi /2}{\frac{\sqrt{\cot ( \frac{\pi }{2}-x )}}{\sqrt{\cot ( \frac{\pi }{2}-x )}+\sqrt{\tan ( \frac{\pi }{2}-x )}}dx} $

$ =\int_0^{\pi /2}{\frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}dx} $ ……(ii)

Now adding (i) and (ii), we get

$ 2I=\int_0^{\pi /2}{\frac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}dx=[x]_0^{\pi /2}\Rightarrow I=\frac{\pi }{4}} $ .