Definite Integration Question 102

Question: If $ g(x)=\int_0^{x}{{{\cos }^{4}}tdt,} $ then $ g(x+\pi ) $ equals

[IIT 1997 Re-Exam; DCE 2001; UPSEAT 2001; Pb. CET 2002]

Options:

A) $ g(x)+g(\pi ) $

B) $ g(x)-g(\pi ) $

C) $ g(x)g(\pi ) $

D) $ g(x)/g(\pi ) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ g(x+\pi )=\int_0^{x+\pi }{{{\cos }^{4}}tdt=\int_0^{\pi }{{{\cos }^{4}}tdt+\int _{\pi }^{x+\pi }{{{\cos }^{4}}tdt}}} $

$ =g(\pi )+f(x) $

$ f(x)=\int_0^{x}{{{\cos }^{4}}udu=g(x)} $ , $ (\because t=\pi +u) $

$ \therefore g(x+\pi )=g(x)+g(\pi ) $ .