Definite Integration Question 108

Question: $ \int _{\pi /3}^{\pi /2}{\frac{\sqrt{1+\cos x}}{{{(1-\cos x)}^{\frac{5}{2}}}}}dx= $

[AI CBSE 1980]

Options:

A) $ \frac{5}{2} $

B) $ \frac{3}{2} $

C) $ \frac{1}{2} $

D) $ \frac{2}{5} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int _{\pi /3}^{\pi /2}{\frac{\sqrt{1+\cos x}}{{{(1-\cos x)}^{5/2}}}\times \frac{\sqrt{1-\cos x}}{\sqrt{1-\cos x}}}dx $

= $ \int _{\pi /3}^{\pi /2}{\frac{\sin x}{{{(1-\cos x)}^{3}}}dx} $

Now, put $ 1-\cos x=t $

Also, when $ x=\frac{\pi }{3},t=\frac{1}{2} $ and $ x=\frac{\pi }{2},t=1 $

Therefore, $ I=\int _{1/2}^{1}{\frac{dt}{t^{3}}=| \frac{{t^{-2}}}{-2} |} _{1/2}^{1}=\frac{3}{2} $ .