Definite Integration Question 110

Question: If $ u _{n}=\int_0^{\pi /4}{{{\tan }^{n}}xdx,} $ then $ u _{n}+{u _{n-2}}= $

[UPSEAT 2002]

Options:

A) $ \frac{1}{n-1} $

B) $ \frac{1}{n+1} $

C) $ \frac{1}{2n-1} $

D) $ \frac{1}{2n+1} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ u _{n}=\int_0^{\pi /4}{{{\tan }^{n}}xdx} $

$ =\int_0^{\pi /4}{({{\sec }^{2}}x-1){{\tan }^{n-2}}xdx} $

$ =\int_0^{\pi /4}{{{\sec }^{2}}x{{\tan }^{n-2}}xdx}-\int_0^{\pi /4}{{{\tan }^{n-2}}xdx} $

$ =[ \frac{{{\tan }^{n-1}}x}{n-1} ]_0^{\pi /4}-{u _{n-2}} $

$ \Rightarrow u _{n}+{u _{n-2}}=\frac{1}{n-1} $ .