Definite Integration Question 111

Question: $ \int_0^{1}{\log \sin ( \frac{\pi }{2}x )}dx= $

[RPET 1997]

Options:

A) $ -\log 2 $

B) $ \log 2 $

C) $ \frac{\pi }{2}\log 2 $

D) $ -\frac{\pi }{2}\log 2 $

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ \frac{\pi }{2}x=\theta \Rightarrow dx=\frac{2}{\pi }d\theta $ ; As $ x=0 $ to $ 1, $

$ \theta =0 $ to $ \frac{\pi }{2} $

Then it reduces to $ \frac{2}{\pi }\int_0^{\pi /2}{\log \sin \theta d\theta =\frac{2}{\pi }[ -\frac{\pi }{2}\log 2 ]} $

$ =-\log 2 $ .