Definite Integration Question 113

Question: $ \int_0^{\pi /2}{\frac{d\theta }{1+\tan \theta }}= $

[Roorkee 1980; MP PET 1996; DCE 1999]

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{\pi /2}{\frac{d\theta }{1+\tan \theta }=\int_0^{\pi /2}{\frac{d\theta }{1+\tan ( \frac{\pi }{2}-\theta )}}} $

$ =\int_0^{\pi /2}{\frac{d\theta }{1+\cot \theta }} $

On adding, $ 2I=\int_0^{\pi /2}{( \frac{1}{1+\tan \theta }+\frac{1}{1+\cot \theta } )d\theta } $

= $ \int_0^{\pi /2}{d\theta =[\theta ]_0^{\pi /2}=\frac{\pi }{2}\Rightarrow I=\frac{\pi }{4}} $ .