Definite Integration Question 114

Question: $ \int_0^{\pi /2}{{{( \frac{\theta }{\sin \theta } )}^{2}}d\theta =} $

Options:

A) $ \pi \log 2 $

B) $ \frac{\pi }{\log 2} $

C) $ \pi $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ I=\int_0^{\pi /2}{{{( \frac{\theta }{\sin \theta } )}^{2}}d\theta }=[-{{\theta }^{2}}\cot \theta ]_0^{\pi /2}+\int_0^{\pi /2}{2\theta .\cot \theta .d\theta } $

$ =2[\theta .\log \sin \theta ]_0^{\pi /2}-2\int_0^{\pi /2}{\log \sin \theta d\theta } $

$ \Rightarrow \frac{I}{2}=0-\underset{\theta \to 0}{\mathop{\lim }}\theta \log .\sin \theta $

$ -\int_0^{\pi /2}{\log \sin \theta d\theta } $

therefore $ \frac{\pi }{2}\log 2 $ .

Hence I = $ \pi \log 2 $ .