Definite Integration Question 115

Question: $ \int_0^{1}{\frac{\log x}{\sqrt{1-x^{2}}}dx=} $

[BIT Ranchi 1984]

Options:

A) $ \frac{\pi }{2}\log 2 $

B) $ \pi \log 2 $

C) $ -\frac{\pi }{2}\log 2 $

D) $ -\pi \log 2 $

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x=\sin \theta , $ we get $ \int_0^{1}{\frac{\log x}{\sqrt{1-x^{2}}}dx=\int_0^{\pi /2}{\frac{\log \sin \theta .\cos \theta }{\cos \theta }}}d\theta $

$ =\int_0^{\pi /2}{\log \sin \theta }d\theta =-\frac{\pi }{2}\log 2 $ .