Definite Integration Question 116

Question: $ \int_0^{\pi /2}{x\cot xdx} $ equals

[RPET 1997]

Options:

A) $ -\frac{\pi }{2}\log 2 $

B) $ \frac{\pi }{2}\log 2 $

C) $ \pi \log 2 $

D) $ -\pi \log 2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{\pi /2}{x\cot xdx} $

Integrating by parts, we get $ [x(\log \sin x)]_0^{\pi /2}-\int_0^{\pi /2}{\log \sin xdx} $

$ I=-( -\frac{\pi }{2}\log 2 )=\frac{\pi }{2}\log 2 $ .