Definite Integration Question 119

Question: The value of $ \int _{-1}^{3}{{{\tan }^{-1}}( \frac{x}{x^{2}+1} )+{{\tan }^{-1}}( \frac{x^{2}+1}{x} )dx} $ is

[Karnataka CET 2000]

Options:

A) $ 2\pi $

B) $ \pi $

C) $ \frac{21}{5}\pi $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int _{-1}^{3}{[ {{\tan }^{-1}}( \frac{x}{x^{2}+1} )+{{\cot }^{-1}}( \frac{x}{x^{2}+1} ) ]dx} $

$ =\int _{-1}^{3}{( \frac{\pi }{2} )dx=[ \frac{\pi x}{2} ] _{-1}^{3}=2\pi } $ , $ ( \because {{\tan }^{-1}}(x)+{{\cot }^{-1}}(x)=\frac{\pi }{2} ) $ .